The solution structure of the Mu Ner protein reveals a helix-turn-helix DNA recognition motif.

نویسندگان

  • T E Strzelecka
  • G M Clore
  • A M Gronenborn
چکیده

BACKGROUND The Mu Ner protein is a small (74 amino acids), basic, DNA-binding protein found in phage Mu. It belongs to a class of proteins, the cro and repressor proteins, that regulate the switch from the lysogenic to the lytic state of the phage life cycle. There is no significant sequence identity between Mu Ner and the cro proteins of other phages, despite their functional similarity. In addition, there is no significant sequence identity with any other DNA-binding proteins, with the exception of Ner from the related phage D108 and the Nlp protein of Escherichia coli. As the tertiary structures of Mu Ner and these two related proteins are unknown, it is clear that a three-dimensional (3D) structure of Mu Ner is essential in order to gain insight into its mode of DNA binding. RESULTS The 3D solution structure of Mu Ner has been solved by 3D and 4D heteronuclear magnetic resonance spectroscopy. The structure consists of five alpha helices, two of which comprise a helix-turn-helix (HTH) motif. Analysis of line broadening and disappearance of crosspeaks in a 1H-15N correlation spectrum of the Mu Ner-DNA complex suggests that residues in these two helices are most likely to be in contact with the DNA. CONCLUSIONS Like the functionally analogous cro proteins from phages lambda and 434, the Mu Ner protein possesses a HTH DNA recognition motif. The Ner protein from phage D108 and the Nlp protein from E. coli are likely to have very similar tertiary structures due to high amino-acid-sequence identity with Mu Ner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains.

The phage Mu transposase (MuA) binds to the ends of the Mu genome during the assembly of higher order nucleoprotein complexes. We investigate the structure and function of the MuA end-binding domain (Ibetagamma). The three-dimensional solution structure of the Ibeta subdomain (residues 77-174) has been determined using multidimensional NMR spectroscopy. It comprises five alpha-helices, includin...

متن کامل

Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase.

The MuA transposase of phase Mu is a large modular protein that plays a central role in transposition. We show that the Mu end DNA-binding domain, I beta gamma, which is responsible for binding the DNA attachment sites at each end of the Mu genome, comprises two subdomains, I beta and I gamma, that are structurally autonomous and do not interact with each other in the absence of DNA. The soluti...

متن کامل

In silico structural analysis of quorum sensing genes in Vibrio fischeri

Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...

متن کامل

Identification of the domains for DNA binding and transactivation function of C protein from bacteriophage Mu.

The C protein, a middle gene product of bacteriophage Mu, is the determinant of the transition from middle to late gene expression. C activates transcription from four late gene promoters, P(lys), P(I), P(P), and P(mom) by binding to a site overlapping their -35 elements. Site-specific, high-affinity binding of C to its recognition sequence results in both axial and torsional distortion of DNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 3 10  شماره 

صفحات  -

تاریخ انتشار 1995